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The axisymmetric problem of elastic equilibrium of a spherical shell was examined in pa-
pers [1 to 3. A detailed analysis of the asymptotic behavior of the solution for a shell of
small thickness is given in paper [4] in connection with the problem of transformation in
the limit from three-dimensional problems of the theory of elasticity to two-dimensional
problems. However, the question of behavior of the solution for uneven loadings is not ex-
amined in this paper. Some results related to this problem were obtained in paper [sl.

An analysis is presented for the asymptotic bebavior of the stress-deformation state of
a closed spherical shell in case of torsion by forces which are uniformly distributed along
parallels, and also in the case of loadings which have weaker singularities. The investiga-
tion is carried out on the basis of special formulas for summation of series containing Le-
gendre’s functions. The derivation of these formulas is carried out with the degree of gen-
erality which is necessary for the analysia of the given problem.

1. Summation formulas. Let us examine a series of the following form
[« o]

K(®,8) = D F(z) P, (cos8) Py (cosE) F(z)=“g(‘:)’ (’;:z":‘izz) (1.1)

=0
Here Py (u) are Legendre’s polynomials, F{z) is an odd meromorphic function.
Let us assume that U(z) and D{z) are such that the following conditions are fulfilled.
1) Functions U{z) and D(z) are entire functions, which have real values forz = x,
2) The behavior of F(z) outside the vicinity of poles for sufficiently large values | z| is
determined by the inequality

|F ()| < M|z|p*" (1.2y
(M, p,a = const; M > 0,a > 0)

3) Function F{z) has a countable set of poles. For the sake of simplicity let us assume
that on the real axis there are two n«th order poles 2, and <%, (if 2y coincides with any x,,
the series (1.1) does not contain the comresponding temm); all other poles are simple and com-
plex. Those which are in the first quadrant are designated by s, (k = 1, 2,...). Because of
property 1) it is apparent that — 2, 3, and — ¥ will also be poles together with s4.

Series of the type {1.1) describe the stress-deformation state of the spherical shell if the
external Ioading is applied in the form of conditions distributed slong the parallel 0= £
(through the application of the principle of superposition we may obtain the solution also for
any distributed loading), In connection with this, conditions are formulated for the function
F{z). It i not possible to investigate the behavior of the atrass~deformation state of the
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shell in the case where the shell thickness tends to approach zero, starting directly with
series of the type (1.1). For this purpose summation formulas will be utilized the derivation

of which is given below.
1. For the sake of definiteness let us assume that @ > £ and let us examine the following

integrals
JE= E:E § ot (2) dz, o (5) = F (2) P,_y, (c0s )Q¥, s, (cos )

Here C * and C —are contours represented in Fig. 1, where {; and {3 are selected in
such a manner that C* and C —do not contain poles of function F(z) and Q t,, (cos@). Let
us note the following properties of the Legendre function of the first kind P,.% (cos &), and
the Legendre function of the second kind

szi‘/. (cos 8) = Q,_y, (cos 8 F i0)-
1) For | ll = oo in the region § LK nm ~ 5, 8> 0, we have asymptotic expressions [s]:

— 2 " _=x ~-1
P,y (c0s0) = (—20) [cos(ze Z)+oe )] (1.3)
Y )
Q.%, (cos0)= (Lne) [1+ 0 (z]exp [:t i (26 + i)] (1.4)
2) Quantities Q £ v, (cos 0) are meromorphic functions of their own index which have
simple poles at points z = — x,(x, = k + %), where
res Q% (cos®) = Py (cos0) for z =—z; (1.5)

This relationship is easy to obtain if the following representations are used:

Q. (c0s0) = P,.y, (c0s 0)[Inotg § —1— ¥+ kin/2] +

4 oosnz 2 T+ Yt 2) T+ Vs z)flf;,) ¥ sO=v(4+7
1=
! Here y is Euler’s constant, ¥ (z + /;) is the
logarithmic denvauve of the gamma function. The
-, ¢
*z  nonregularity of Q s {cos 6) is connected with the

fact that the function ¥ (z - Y/;) has simple poles at
é points z = — x, (k= 1, 2,0..).
4 Relationship (1.5) is a result of the fact that res

AL P LA

NTep Y

\' x
W\‘l % \p (z+ Yy =—1 with respect to 2 = — x, and
A ._’7 P,, (cos®) =P_, - (cos ).
-, E Now computing J ¥ and J — with the aid of the re-
?  sidue theory, we obtain in the limit for |{,| and |{ ]
Fig. 1. -0

- < U (= 7
r=3 [ZB (i ;) - (€05 BIQ._y, (05 0) + zz (Z';) Py _y, (cos E) Q" (c0s e)] (1.6)

- i ZkU (Z).) z U (z ) -~
Jm= kgl[—-——-ul (=) s (cos §) Q-z l/.(0080)+ L (Zk')‘ P‘ 1 .(008 ) Qlk-‘/' (cos 9)](17)

Further we represent / * nnd I ~ in the form

L U

{5 Z‘S_S_S S:+§+S}®*(Z)dz (1.8)

la=] Yk You - .__El
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J-=L{—§— K}j § -~ S_+_§’+ §+§} O (d:  (19)

2aii K=Y Ye©  YaT o TG =T,

Here L is that part of contours C* and C=, for which points are on the real axis; 701+
and y,, ~ are half-circles with centers at the point z,, which are located above and below
the real axis, respectively; }’oz and y o, are half-circles with centers at the point ~ 2,
located above and below the real axis, respectively; y,* and y,— are half-circles with
centers at the. points 2 = — x,, located above and below the half-planes, respectively.

We shall show initially that for |§1| and |€2| -+ oo the last three integrala in (1.8) and
(1.9) disappear. Let us examine for example the two following integrals:

14} —Z
Lt = S(D* (2) dz, Is* = S ®* (z) dz
[} 143

Changing to integration over y and x, respectively, it is easy to obtain the following
estimates with the aid of inequality (1.2) and asymptotic Eqs, (1.3) and (1.4):

Me %l L _
W< g Vamoent mm{S'z"’ 0L 0y gy
M [e0]
| LY < W_____ [eVO-8) o= (400 S [z |P-1 pmalxlg,
sin O sin § %

On the basis of assumption > £, therefore the last inequalities show that 11 and 12
decrease without bound for M | and |? - oo, We may show in an analogous manner that in-

tegrals disappear over the regions [ 41 . (1, (7] [ {2, {,] and [{2, 4‘21 5

Further, examining integrals over yk and y; ~for p » 0 we obtain on the basis of
and of F(z) being odd;
lim 1. S O (z) ds = S ®(z) dz = L F (zy) Py (cos8) Py (cos E)
o0 2700 2n; 2
Yk+ Y.~
After transition to the limit for |{,| and [{ 4] + o for p + 0 we arrive at the following re-
presentations:

L _K@D_Kt®8, 1 ( o
Jr="ts 20 +mgm(z)dz

o]
- K08 _ K68 1 -
V= - — —m_sno (z)d=z (1.10)

Here and below improper integrals are understood in terms of their regular values, K(8,
£) is determined by Egq. (1 1

T, t)=res®E(z) + res OF (1) (1.41)

2=z, z=—1,

Combining now Eqgs. (1.10) and utilizing Expressions (1.6) and (1.7) we obtain the first
formula for summation (1.12)

KO0=K (0.8 + D {% Peytn (€05 B [Q,7 1y, (03 8) + Q_,_y(cos )] +
k=1

+z’bU ((:*)) Pz Vs (c08 E) [Q_, _1, (€03 6) -+ Q™ ~ (€03 0)], Ko (8,8)="/2[ Ko*(6,E)+ Ko~ (8, E)]

The integral
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o]
§ F (@) Poy, (cos ) 1Q,%, (c05 0) — @, (cosB)] dz = 0
—oo
because Q,:% (cos ) — Q, 5, (cos By = ~ inP,_, (cos 0) and F(x) is by assumption an odd

function,
2. Let us examine a series with alternating signs of the form

K18, B)= D) (—1)"F (x,) Py (cos ) Py (cost)

h=1
For the derivation of the summation formula of the series we evaluate the integral
Je 1 F (2)

%4i ¢ tosmz P, s, (cosB) P, (cosE)dz
c

Here C is the contour shown in Fig. 2, where (is selected such that the contour does

_ 4 not contain in its vicinity poles of the function under the
< {, integral. Since cos 7 2z has zeros at points z = tx, and F{z)
is an odd function, we obtain from the residue theorem
n
U = J= 3| F(zk) Px(cosB) Py (cosE) + Ko + Wy
he=l
n F(z)
1) o —
~¢ £ Ko™ = 2 Z z:f;izo €OS 1tz PZ"‘/! (cos8) PZ"/! (cos§)
&m0 (3)
; —=—2nRe > Fx/\Zx) '
Fig. 2 Wy R he 2 cos mzpD (zg) sz_,,x {c0s6) sz_,l_’ {cos &)

k=1
where n = [Re {1, N is the number of poles of the function lying in the first quarter bounded

by the rectangle C.

On the basis of inequality (1.2} and asymptotic Eq. (1.3) it is easy to show that for 8 +
&< and |{| » =, the integral approaches O, therefore after transition to the limit we obtain
the following representations for the sum of the series:

Ky (8,8 =K+ W, W=IlimWn (N - ) (1.13)

2, Torsion of the spherical shell, 1° Let the closed spherical shell with
internal and external radii R; and R,, respectively, be related to a spherical system of co-
ordinates R, @ and ¢, where f is the latitude and ¢ the longitude; = 0 and @ = 7 corres-

ponds to poles of the surface R = const.
Let us first examine the case where the shell is deformed under the following conditions

GR=1R0=1M=0 for R=R

Sp=Tpe=0, TR«,=q[5(9—~§)—-5(9—ﬂ+§)] for R == R,
Here 8(0) is the delta function, g is the magnitude of tangential stresses distributed

along parallels f= & and 8= — &,
The solution of this problem obtained by the method of separation of variables has the

form
up =uy =0, GR=GO==G¢=TR9==O

U (7)) 2Py (cas 8) dP,, (cosE) _
D (zy;) o dE

u°=

oo
gexp(A +31)e px S i
2G =

8 0%
A2 (2G+ hle . tapaz (KOG 8+ K b)) (2.4)
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Here G is the shear modulus, and K (0, £) and K, (8, &) are determined by Eqs. (1.12)
and (1.13):

U (s, \) = ¢~/?® (22 ch Aez + 3 sh Aes) (A =1/elnR/Ry) (2.2)

Dz} = (2 — V) (22 —~%)shez {e=In R,/ Ry) (2.3)

It is apperent from (2.3) that D(z) has four resl zeros 2=t andz=13/2 and a
countable set of complex z, =i(kn/8) (k=0, 1, 1,...)
Stresses 7T, and T, are related to displacements u, by Egs.

3 G (% )
R "e«o=W(ae—“w°‘g°

Solution (2.1) yields poorly to analysis when &~ O (it is evident from (2.3) that ¢ char-
acterizes the wall-thinness of the shell). Therefore we shall transform it with the aid of
summeation Formulas {1.12) and (1.13). We note that the function under the summation sign
in {(2.1) does not have poles at points z = 1} because at these values the derivative with
respect to § in (2.1) becomes zero, For u,, T, and T;, we obtain the following Expres-
sions:

an == RG

U= 1,0 +u P, ot =11l Th, =) (2.4)
Here
3gePegin g o 3ge"**sin§
ue? = "Togsmne Fu® 8 Y =g mus [<G:9 @9)
A € 5ip e sin g OT
ug =2 e gy o), =T
ge’*sing (0T @)
Fy (0, E) = 2 sin & (sin 0 In ctg ¥/,0 + <tg 8) 2.1
F, (8, £) = — (2 sin E/sin6), (2.8)
Expressions (2.7) and (2.8) are applicable for 8> &
oo
zxU (zx) 0 W ~
Ty (815 3) = z P0G — e ke P | fov 2, (€08 8) [2Q_sfy;, (cos6) +
k=1
sin szy + 1
o mr PWoyr, (c080)] (2.9)

For @ < £ in the expression for u{ it is necessary to replace F, @, &) by F, (£, 6), in

Eqs. (2':%6) it is necessary to replace T, (6, £, A) by T, (£, 0, A) and in the equation for 192
Fol8,6) b
i ’ FY 0,8 = 0 (2.10)

We shall show that for sufficiently small expressions uf;,l), 752 and r%l. are localized
in the vicinity of the applied stress (§ = £, @ = — £). For this purpose it is apparently
sufficient to show that the function T, (8, £, M) decreases rapidly with increasing distance
from the indicated parallels.

Let us turn to Expression (2.9). We note that quantities z, = ik7/e have large values for

small &. Therefore, substitating in (2.9) OL'(/}«)rz,. (cos 6) and P(_l,}“_zk (cos ) by two tems

of their asymptotic expansion, we may after some transformations, represent 73(8, £,A) in
the form

T, (0, &, A) = ¢ /e [T,098, E, &) + &7,V (8, &, &) + O (e%)] @41

Here



156 N.A. Poliakov and Iy. A, Ustinov

[+

k

Ty 9, € A) = 2 S (1) COSME v @) g, g (242
Vsin@sing o, k

o0
k
TV @ E A) = 3 =1 [ Lk N0 (1)] 2.13
AR o Vs—‘_—inesinik‘;ll 7 | sin Ak N9 - - cos Ak Ny (2.13)

N (8, &) = exp ['— }%(e—- E)]-— exp [—- {‘—g(n-—g_e)] +

+sh’i§-(—§—-2) sh ’fg(%——a) mh%:exp(w%‘f) (2.14)
N,V (@, E) = 2 mh%[ch’% (-;’}f—-;-g) ch%(%-—-a) ctg®—
— sh"—‘é1 (—g— + g) shl% (—2’5-— e) ctg a} (2.45)

On the basis of (2.11) to (2.15) we may draw the conclusion that u(V, () and )
are solutions of the boundary layer type, localized in the vicinity of the line of stress ap-~
plication. In this case they decay the faster, the smaller the parameter of wall thinness-e.
Consequently, at sufficient distance from line 6= gand O =1 — £, the stresa-defomation
state of the shell is determined by Expressions uf,’ and tgi’ . Let us represent ug” and
1:‘32 in the form

3gsink 2n 2 1
0 =G Fu 0.9 |1+ (1 4+ ) e+ (T4 ) et
gsin®f 1 1
Toy = T "Ree,  sin® (1 +eo— ﬁe"g) (2.16)
to=MhRy h=Ry—Ry, Ry=1Ys(By+R), n=R—R (2.17)

Here A is the thickness of the shell, Ry is the radius of the mean surface. The first
terms of expansions (2.16) and (2.17) represent the momentless solution of the classic
theory of shells, In this manner everywhere in the nonconical sections f=fandb=m-§,
the stress-deformation state of the shell coincides with the momentless condition with an
acenracy to terms of the order of g

Let us examine now in more detail the behavior of the solution in the vicinity of the line
of application of external conditions. Let us consider that sections O=fandf=n—§are
distributed such that the mutual interaction of boundary layers may be neglected, then by
virtue of the symmetry of the problem it is sufficient to limit the examination to the stress-
deformation state in the vicinity of the conic section § = £. Eliminating in (2.9) the main
part and summing it, we obtain for ug), 'rglq), and T g?o the following Expressions

Yy (1-M e o 1

qe sinE\'A n

w0 = — L (sme) {m 2 [ch-a— @— 5)+cosxn] —Zo—g|— (2.18)
o0

e (—1T, cos stk sign (8— E) (ctg0— ctgE) — kn)§—
- 2 T [sm Arck 4+ 3 g gt exp [ n:le E"] + 0(52)}
3y (1-2) € £ a3 1 i

qe gin E\*» sin Axt

He ="ZRm (sin"e) [ch [(n/2) @ —E)] Fcoshn T

3e . in A -
+ 7‘% sign (8 — &) (ctg § — ctg 8) aretg ooy 7e) ls(;'f_ g“ T oo +Q (a’)] (2.19)

g V3 sgin B\t sh {(n/e) (8 —E)) .
T = — —iRe (sin o) <ch [(n/2) 0— E)] -+ coa ki — 5180 (0—8) +

+ = {Fe@o[m2(ch 00 +cosin) + Tlo—g]—

(2.20)
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sin A
—3arelg e Tm7e) [0 —E1] F cos&u} +0 (8,)>

96,8 =3ctgt —15ctgh for 6>E (@B, 8 =—13ctgb +ctgf for 6 <E

The relationships obtained exhibit the character of singularities which have the displace-
ment U, and stresses Tp, and Ty, in the vicinity of lines of stress application (from Eq.
{2.4) it is evident that the penetrating part of solution ug’) and T(‘g does not have singu-
larities), Namely, for @ = £ and A= 1(R = Rj), it follows from (2.18), that u, has a loga-
rithmic singularity and from (2.19) and (2.20) that Ty, and Ty, have a power singularity.
Consequently, in the vicinity of loading lines the stress-deformation state has three-dimen-
sional character.

It is interesting to note that if the curvature of the shell is permitted to go to zero and 8
and £ are allowed to go to %7, then Eqs. {(2.18) to (2.20) in the limit give the'solution for
a layer on which evenly distributed tangential forces act along a straight line located along
the edge.

A comparative analysis of relationships (2.5) and (2.18) to (2.20) shows that in conical
sections = and =7~ ¢ ug)), 7&‘2 have the order 0( &-1), while the order of ug) and
1&2 is 0(1) and 0(e-1), regpectively. This permits to draw the conclusions that everywhere,
with the exception of the line of loading, u, for - 0 asymptotically approaches the solu-
tion of momentless theory of shells. It also gives for Ty, a correction of the same order of
magnitude with respect to £ as tgg. at points of sections mentioned, In this case ‘t&?
and also 1:(1) have discontinunities of the first kind at @ = € and f =7 — £, however Top =

9o
— {0 i i
— 'f%cg + 1&3 is continuous and has the form

% :_4‘1 [1+6(1~—}»)+0(a}}

L4 Rae

which follows from (2.5), (2.8), {2.9) and (2.20). ForA=1,0=E and G=m — £, as was al-
ready noted, T, has a'singularity.

With regard to stress T(l)p., we note that for 6o £, O 7 — £ and £+ 0 it decreases
without bound. For 8 = &:

q An
TRe =7 R [Cg 5 +0 (8)]

and as is evident, it has the'same order as Ty,

The analysis which was presented-shows that in the vicinity of the line of loading in the
limit a passage to two-dimensional problems is not possible becanse the stress condition
has an essentially three-dimensional character.

2. Let us examine now the behavior of the streas-deformation state of the shell when
the external loading has weaker singularities. We shall assume that the internal surface of
the shell is free of stresses and that tangential stresses are given on the external surface

Tre = 4 ()

With regard to ¢ (0) let us assume the following: 1) function g (7 —0) = — ¢ (0) 2) function
¢ (8) is continuous together with its n ~ 1 derivative, () (0) has a discontinuity of the first
kind for @ = 60 and f=1 ~ 80, the derivative ¢ ("*1)(8) is integrable in the interval [0, #].

It is apparent that by virtue of condition 1), the solution of the presented problem is ob-
tained through the application of the principle of superposition to relationships (2.4) to
(2.10), In this manner u, can be presented in the following form

Ug == %(0) + “wm
o dedHe hr
4o =Tganrre ) Fu® Da @ sinEdt+ } Ful®0)q(®) sine:dr.]
4]
(2.21)

O e tn

i {S T1(8, & M) g (B) sin§dE < 3 T1(€, 6, M) ¢ (§) sin zdz]

u ¢(n —
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As a result of some transformations connected with n-fold integration by parts of the
right-hand part of (2.21) for 8> 0 g ull' can be represented in the form

gy _ P S VO 5 5 (M) [BY) + BY)
] IG { 2 jg}o {(— 1) C]q‘lj (9) + kg{ (22— %) (53— 1/‘)1»1 gch ez
Here (2.22)
p= [_;—] s q'.vj = Aj 9 A? = %{81%9 [‘;é‘ (Q sin 6)]}
o
Cj= U (25, M) =-—res [, (z) —res 1;(2)
7=},

Nt (33— %) (52— Vs e ch gz 2=t
zU (z, &)
(23— %/3) (23 — 1/‘)j+1 sh ez

fj (2) =

Bkm) =(— i}’ sin GoP_,/Mk (cos 60) Sk(l) © [q(ﬂ) (80— 0)— q(n) (60 -+ 0)) (n=2s)
(1]

(2.23)

BV = (— 1)* [Sx“’ (e)é Pyjpps, (008 ) .df{ (05 08V 25 4 Py, (c088) X

i/'.'

d
X § 5K (8) 7 (g sin ©) 48

— 1}**1gin B m
Bo= 0 —nk P, (cos8) SV @) [g™ B —0)~ g™ @ $0)] (n=20p1)

zxd 1/
(2.26)
(__ i)! 0‘
B =S [Sk‘” ®) § P, (€05 E) gy (B) sin EE +
hn

i

+ P".}:zz} (cos8) \ 85N (E) 0y, (B) S E da]
]

sin 1tz 1
8 (8) =—-!2Q_,/(}+’zk (cos0) + = %‘%%:— P__,}},zzk (cos6)

It follows from relationships (2.22) to (2.24) that in the vicinity of discontinuities g™
{8) local effects arise of the boundary layer type. However, their effect on all solutions is
the weaker, the smoother g (9) and the smaller e. In fact, an analysis of coefficients con-
tained in the second sum (2.22) shows that they have the order 0( &8 22 *1), Coefficients C,
have the order 0{& ¥ *1), The first two coefficients have the form:

Co==—tfs €2 [(A3—g) &1 F/a h (A2 - 1) €3 - %13 (o AS — A2 Va) &7]

[Cr =Yrsg €12 (3573 08 - 20 A3 - 89/5) €2

In this manner, even if ¢ (9) has a discontinuity of the first kind, Expression uf,l) has
the order 0(£) at the-same time as 3(® has the order O{ g~1), The series in {2.22) conver~
ges uniformly for any A, therefore the behavior of %, for small & is determined in the
entire region by the first term of expansion ug” « This term is the solution of the moment-
leas theory of shells.

The character of behavior of stress Ty, in the vicinity of discontinuity ¢(6) turns out
to be more complex. For illustration we shall present the ssymptotic equations describing
the behavior T, in the vicinity of the conic-section 6 =8,
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— o (0) (1)
T(kp - Tem + TO@

Here p
" ‘ "
7, —m [\ F_(8,E)q(E)sinEdE + 3 F (8, £) q(E) sin Edﬁ]

g
1
Tu“)zgmz {ln 2[ch8£ <8‘eo)+cos7»n] — %\9—-80&} [g (8 —0) —
— ¢ (6o +0)] + O (e) (2.25)

For the discarded terms to have the order indicated, it is sufficient to assume that g “{6)

at the point A= has finite limits from the left and from the right side.

It is apparent from relationships (2.25) that Ty, contains in it solutions of the boundary

layer type localized in the vicinity of section # = f. With respect to & its order is O(1).
1t has a logarithmic singularity on the line of discontinuity. Consequently, for & + 0, Tge
approaches asymptotically everywhere, with the exception of the line of discontinuity, the
value which is determined from the momentless theory of shells.

For the solution of the three-dimensional problem to tend everywhere to the momentless

state, it is sufficient for external loading ¢ (A) to be continnous.
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