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The axisymmatric problem of elastic equilibrium of a spherical shell was examinsd in pa- 
pers [ 1 to 31. A detailed analysis of the asymptotic behavior of the solution for a shell of 
small thickness is given in paper [d in connection with the problem of transformation in 
the limit from three-dimensional problems of the theory of elasticity to two-dimensional 
problems. However, the question of behavior of the solution for uneven loadings is not ex- 
amined in this paper. Some results related to this problem were obtained in paper [Sl. 

An analysis is presented for the asymptotic bebavior of the stresadeformatlon state of 
a closed spherical shell in case of torsion by ‘forces which are uniformly distributed along 
parallele, and also in the case of loadings which have weaker singularities. The investiga- 
tion is carried out on the basis of spedal formulas for summation of series containing Le- 
gendre’o functions. The derivation of these brmalas is carried out with the degree of gen- 
erality which is necessary for the analysfa of the given problem. 

1. Summation formulas. Let us examine a series of the following form 

K (0, f) = ; F @I.) PI, (~0s 0) J’/, (~0s 4) zu (2) F (z) c _ x/, = k -+ I/%’ 

1 
(f.1) 

L =o u (4 z=x+iy 

Here Pk @> are Legendre’s polynomials, F(x) is an odd meromorphic function. 
Let ua assume that U(z) and Ofat) are such that the following conditions are ~l~lled. 
11 Functions Zf(sl and D(z) are entire fttnctions, which have real valuea for t = x. 
2) The behavior of F(x) outside the vicinity of poles for snfficisntly large valuer 1 I 1 in 

determined by the inequality 

1 F (z) 1 < M [ 2 \ pc-=“’ (W 
(M, p, a f const; M > 0, a > 0) 

3) Function F(t) has a countable set of poles. For the sahe of ~simplicit]r let us assume 
that on the real axis there are two n-tb order poles zo and JO (if so coincides with any sk, 
the series (1.11 does not contain the corresponding term); all other poles are l lmpla utd cota- 
plex. Those which are in the first quadrant are designated by xk U I 1, !&...I. Bsosuse of 
property 1) it is apparent that - zh 5, and - Zk will alao be polen together with ry. 

Setiea of the type (1.11 describe the strtsrrdeformation state of the spherical shell if tbo 
external loading is applied in the form of conditions distributed along the parallel 0 I t 
(through tbe application of the principle of nuperposition we may obtain the solution slso for 
any distributed loading). In connection with this, conditions are formulated for the function 
F(s). It im not possible to investigate the behavior of the stmas-deformation state of the 
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shell in the case wham ths shell thickness tends to approach zero, starting directly with 
series of the type (1.1). For thim purpose summation formulas will be adlised the derivstion 

of which is given below. 
1. For the sake of definitsnsss let ns assume that 8 > e and let us examine the following 

integalv 

J’=& 
Y! 

Q* (2) dz, @* (z) = F (2) P,_a,, (cos E)Q*,a,, W 0) 

Cf 

Here C + and C -sre contours represcmted in Fig. 1, where & and 62 are selected in 

sad a manner that C+ and C -do not contain poles of function F(z) and Q zf_,,, (con 8). Let 
us note the following properties of the Legendre fnnction of the first kind P=+ (cos &,, and 

the Legendm function of the second kind 

Q,f_,,* (cos 0) = Qr-*,, (co9 0 r iO)* 

1) ForIz)-roointheregion8,<e,<n- 6, 6 > 0, we have asymptotic expressions [6]: 

P+,, (COSEI) = (-&j)“a[cos(~e - 2) + 0 (4J 

Q,$,, (~0s ‘3= (A) I” ii + 0 (z-l)1 exp [* i (ze + 2,] 

(1.3) 

(1.4) 

2) Quantities Q $a,, (coo 8) are meromorphic functions of their own index which have 
simple poles at points L = - x,(x, = k + Lx), where 

res Q &, (cos 0) = PI, (co8 0) for z = - zk (1.5) 

‘f’his relationship is easy to obtain if the following representations are used: 

Q&, (~0s e) = P+,, (~06 e) 
[ 

in ctg + - T - (I, (z + I/*) f in / 21 + 

CO8 nz 
-t - 

n si r (I + ‘12 $- Z) r (1 + ‘12 - z) ‘$ sina’ + aU)=(P(l+i)+r 
I-. 

Here y is Euler’s constmt, $ (z + l/J is the 

-z< V t 
logarithmic derivative.of the gamma function. The 

l nonregularity of Q &, (con 8) is connected with the 
fact that the function 9 (z + l/.J has simple poles at 

_&&_ 7; 6, 
points z = - sk (k = 1, 2,...). 

-4 +‘3; z 
Relationship (1.5) is a result of the fact that res 

z (z + I/%) = - 1 wi+ respect to t = - xlr end 

*+, (cos 0) = P_,_,,, (~0se). 

-4 
” 

Now computing 1’ and I -with the aid of the re- 

Fig. 1. 
sidue theory, we obtain in the limit for 1511 and l[,l 
+Do 

J+= 5 [“k” (‘k)p 
A=1 D fZA) 

zk-~,,(cos E)Q;,_x,, (~0s 0) + ‘~PI-,_I,, @OS El Q$,, @OS 0) 
A I (1.6) 

J- = 5 [m Pz,_,,, (CO8 &I 
k_l fJ (a) 

Q_ -+,(COd)+~ P+, (Co9 E) Q=_ 
‘k Zk ‘II (CO9 @](w 

Further we mpressnt I+ and I - in the form 
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J-A_{+ 5 s - 5 - 5 +-s;‘+ y+p a-(z)dz (1.9) 

L L=l y,k- YOC Ye- __i, -4 * 

Here L is that part of contours C+ and C-, for which points are on the real axis; yott 

“dYot- are halkcircles with centers at the point zo which are located above aad below 

the real axis, respectively; Yo2’ and Yo2- are half-circles with centers at the point - zo, 

located above and below the real axis, respectively; Ykt and Yk- are half-circles with 

centers at the. points Z - - xk, located above and below the half-planes, respectively. 

We shall show initially that for \ct\ and [(,I + m the last three integrals in (1.8) and 
(1.9) disappear. Let us examine for example the two following integrals: 

r;r -& 

II+ = D+ (z) dz, 
s 

I2+ = 
s 

@+ (z) dz 

Cl L 

Changing to integration over y and x, respectively, it is easy to obtain the following 
estimates with the aid of inequality (1.2) and asymptotic Eqs. (1.3) and (1.4): 

, z IP-1 [,++E)U .+ ,+h] dy 

On the basis of assumption 8 > 5, therefore the last inequalities show that It’ and I,+ 

decrease without bound for \[tl and 1 
tegrals disappear over the regions I- 

+ m. We may show in &II analo_goas manper that in- 

5tlr[-rt,-5J.[-52rr~~d[52,r 
Further, examining integrals over and yk-for p + 0 we obtain on the basis of 

and of F(r) being odd; 

lim ’ 
p”o251i s 

CD+ (z) dz = & 
.s 

D-(Z) dz = ; F (rk) Pk (COSe) Pk (CO9 8) 

‘k+ 
’ y,;- 

After transition to the limit for l[tl and 164 + 00 for p + 0 we arrive at the following re- 
presentations: 

J+ = K @ f) _ K”+ ‘2”* 5) + & r eD+ (x) dx 
2 --00 

co 
J’_ K(k E) K-o(e,E) i 

-----ini 2 2 
@- (5) dx 

Here and below improper integrals are understood in terms of their regular values, K(8, 
5) is determined by Eq. (1.1) 

Ko* (e, f) = res @* (z) + res @* (z) (1.11) 
z=;, ,Z=--le 

Combining now Eqs. (1.10) and utilizing Expressions (1.6) and (1.7) we obtain the first 
formula for summation 

(1.12) 

(039 e) + Q_z;_,,,(COS e)] + 

++!+i$ p<-vl (~0s 5) [Q_+, (~0s 0) -k Q+,, (COB e)i,Ko te,E)=lf~[Ko+(e,F;)fKo‘- (e, 111 

The integral 
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00 

s F (4 %I,, 60s 4) I Q,ts,, (~0s 0) - Q&, (cos 0)J dz = 0 
-a3 

because Q,& (cos 8) - Q,_$, (cos 6) = - inP,_% (cos 8) and F(r) is by assumption sn odd 
function. 

2. Let us examine a series with alternating signs of the form 
m 

For the derivation of the summation formula of the series we evaluate the integral 

J=-+ 
F (2) p 

- 
cos m *_t/, (co.3 8) Pz-‘,, &OS Ef d- 

c 

Here C is the contour shown in Fig. 2, where [is selected such that the contour does 

-t 
not contain in its vicinity poles of the function under the 

t integral. Since cos n I has zeros at points z = fr, and F(r) 
is an odd function, we obtain from the residue theorem 

s 
2 = 5 F (XL) Pk @OS 6) pk (cps 5) f &i(l) + w, 

h==l 

Fig. 2 

where n = [Re [I, N is the number of poles of the function lying in the first quarter bounded 
by the rectangle C. 

On the basis of inequality (1.2) and ssymptotic Eq. (1.3) it is easy to show that for 19 + 
c<rr and I[/ -rm, the integral approaches 0, therefore after transition to the limit we obtain 
the following representations for the sum of the series: 

II, (e, E) = Koc’)+ w, W = lim WN (N + W) (1.13) 

2. Torsion of the spherical shell. lo. Let the closed spherical shell with 
internal and external radii R, and R,, respectively, be related to a spherical system of co- 
ordinates R, 6 and 4, where 6 is the latitude and 4 the longitude; 8 = 0 and 8 = n corres- 
ponds to poles of the surface R = must. 

Let us first examine the case where the shell is deformed under the following conditions 

UR =TRo=zn,=O for R=Ri 

=R =TR@=o, ?Rp=q[lr)(e-~)-6(0-zt+~)J for R=R, 

Here 6@) is the delta function, q is the magnitude of tangential stresses distributed 
along parallels 8 = t and 6 = u - 6. 

The solution of this problem obtained by the method of separation of variables has the 
form 

IiR = U@ = 0, bR=O*=O&,=xRB=O 

UT = qexp(h.+%)e . “, %,u &.zi) dPzk @as 0) dPah. (cos E) = 
2G ‘ln E & fJ (x2*) de dE 

_ 9exP11d-%)E 
4c (2.1) 
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Here G ia the ahear modolna, and K (8, 5) and K t(8, e) are determined by Eqa. (1.12) 
and (1.13): 

u (a, a) = By’*“* (22 ch Xez + 3 sh he4 (A= ilelnRIR1) (221 

D (2) = (9 - ‘i‘) (2% - T‘) sh es fe = lnR,/R,) (3.3) 

It is apparent from (2.3) that D (a) has four real zeroa a = f % and I = f 312 and a 
countable set of complex za = i Or n / e) (k = 0, 1, l,...) 

Streaaea rko and TV, are related to diaplacementa ao by Eqa. 

- ug, ctg 0 

Solution (2.1) yields poorly to analysis when e + 0 (it is tvident from (2.3) that e, char 
acterizes the wall-thinness of the shell). Therefore we ahaI1 transform it with the aid of 
aummatiun Fonnulaa (1.12) and (1.13). We note that the function under the summation sign 
in (2.1) doea not have poles at points t = f ‘/i because at these valuea the derfvative with 
respect to t9 in (2.1) becomes zero. For urg, ‘Qa and $, we obtain the following Exprea- 
aiona: 

a9 = I$@) + IQ), repl = z(go + T(l) @v ’ ZR(# = 1cg; (2.4) 
Here 

(o) 3qc(h+‘h)c sin 5 
IQ, = $fjC &rJ,o e F, (0, E)? F, (9. Z) (2.5) 

F,, (0, E) = 2 sin E (sin 8 In ctg l/,0 + stg 0) (2.71 

F, (6, E) = - (2 sin @in”_@; (2.8) 

Expreaaiona (2.7) and (2.8) are applicable for 8 > & 

For 8 < C$ in the expression for $’ it is necessary to replace F, (8, e) by F, f&8), in 
Eqs, (2.6) it is neceaaary to replace T, (8, c, A) by ?‘t (c, 6, A) and in the equation for T&$ 

F,(@, 5) by 
~(1) (e, t) = 0 (2.10) 

We shall show that for sufficiently small expressions ut), ~$2 and t ‘b are localized k 
in the vicinity of the applied stress (8 = t,@ = a - 5). For this purpose it ia apparently 
sufficient to show that the function T, (6, e, A) d ecreaaea rapidly with increasing distance 
from the indicated parallels, 

Lpt us turn to Expression (2.9). We note that quantities zk = ikn/e have large values for 
amall E. Therefore, substituting in (2.9) QL&, (COB 8) and P3i,+z (coa 8) by two terms 

of their asymptotic expansion, we may after *omI; transformationa, rep:eseat Ft(6, c, A) in 
the form 

T, (9, %, h) = t?-‘~~ht fT,fO)(Ef, E, A) + e,l@t (9, E, ;2) + 0 (@)I (2.ii3 
Here 
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(2.14) 

(2.15) 

On the bade of (2.11) to (2.15) we may draw the concloaion that I@), TL; and zfi& 
are solutions of the boaudary layer type* localized in the vicinity of the line of stress ap- 
plication. In this case they decay the faster, the smaller the parameter of wall thinness-e. 
Consequently, at sufficient distance from line 0 = { and 8 = fl - [, the stress-deformation 
state of the shell is,determined by Espressionr, I&’ and $2 . Let IIS represent tlfpo) and 
T($ in the form 

* (01 qsinsF i 
-x i +e0--7iZ0s ( i 

e9 =- fioeo (2.16) 

= hlR,, = R, R,, Ro = l/a (R, -+- R,), q = R - RO (2.17) 

Here k ie the thickaesa of the ahell, Ro is the radius of the mean surface. llie first 
terms of expaaeions (2.16) and (2.1’7) represent the momentleas solution of the claaaic 
theory of shells. In this manner everywhere in the nonconical sections 8 = 6 and 0 = R - e, 
the stress-deformation state of the shell coincides with the momentless condition with an 
accuracy to terms of the order of ~0 

Let aa examine sow in more detail the behavior of the sol&on in the vicinity of the line 
of application of external conditions. Let us consider that sections 8 = I$ and 8 = v - [ are 
distrlboted such that the mutual interaction of boundary layers may be neglected, then by 
virtae of the symmetry of tbe problem it is sufficient to limit the examination to the stmss- 
deformation state in the vicinity of the conic section 8 = [. Eliminating in (2.9) the main 
put and wmming it, we obtain for $1, TL~ and T #, the following Expreaaions 

% 
W=- ~~I;~~‘(~~{ln2[eh~(8_-~)+cosIrr]-~,6_~,_ 

z 5 ($[sinhnk+ 
coshCksign@-~)(ctg&-ctgc) -- 

4 oxP 
k-1 

(2.18) 
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sin In 
-3arCtgexpI(n/e)Ie--~~+~~~In }+O(e2)> 

cp(3,~)=3ctgf; -15ctg0 for @>E, q(%E)=-13ctg@+ctgg for g<E 

The relationships obtained exhibit tbc character of singularities which have the dfaplace- 
ment Ue and strsases vRO) and Tea, in the vfcinity of lines of stre88 application (from Eq. 
(2.4) it is evident that the penetrating part of-solodon @1 and $2 does not have-slngu- 
laritiesl. Namely, for 8 = 4 and x = I# = RP), it follows from (2.181, that mu has a loga- 
rithmic singularity and from (2.19) and (2.201 that ‘t’uu and vR,+, have a powersingularity. 
Consequently, in the vioinity of loading lines the stress-deformation state has three-dimen- 
sional character. 

It is interesting to note that if the curvature of the~shell is permitted to go to zero and 8 
and 5‘ are allowed to go to )c;n, then Eqs. (2.181 to (2.201 in the limit give the-solution for 
a layer on which evenly distributed tangential forces act along a straight line located along 
the edge. 

A comparative analysis of relationshipa (2.51 and (2.181 to 12.20)-shows that in conical 
t secions6+iad~=n-~ 1. ucot 1 =e0 co) have the order O( e-l), while the order of u$’ and 

Te* is O(l) and O( e-l), respectively. This permits to draw the conclusions that everywhere, 
with tbe exception of the line of loading, uV for e-+ 0 asymptotically approaches the~soln- 
tion of momentless theory of.shelbrojIt also gives for xex, a correction of the.same order of 

~~~~~~“h~~‘~~~c~~t~*~~e~~ the first kind at 8 I [ and 6 = n - c, however .xeV = 
at points of.sectiono mentioned. In this case ~g 

= xioJ + v(gl is continuous and has the form 

*ocp - 
-- - & 1 + 6 (1 - h) + 0 (e) 1 

which follows from (2.51, (2.81, (2.9) Ld (2.201. For h = 1, 8 =i f and 8 = n - 6, as was al- 
ready noted, r&p has a.singnlarity. 

With regard to,stress ran, we note that for 8 I# [, 8 4 n - t$ and E + 0 it decreasse 
without bound. For 6 = 5‘: 

and asis evident, it has the-same order as ~8~. 
The analysis which was prssented.sbows that in the vicinity of the line of loading in the 

limit a passage to twodimensional problsms io not possible because the stress condition 
has an essentially three-dimensional character. 

2. Let us examine now the behavior of the stress-deformation state of the shell when 
the external loading has weaker singularities. We shall assume that the internal surface of 
the shall is free of stresses and that tangential stresses are gfven on the. external surface 

Tl2Q = 9 UV 

With regard to q k% let us aseume the following: 11 function q (n - 8) E - q (e) 2) function 
q (8) is continuous together with its n - 1 derivative, q(“) (8) has a discontinuity of the first 
kind for 6 = 8, and 8 = t - 8,, the derivative 9 (n+l)tel is integrable in the interval f0, rrl. 

It is apparent that by drtue of condition 11, the solution of the presented problem is ob- 
tained through the application of the principle of.superposition tu relationships (2.6) to 
(2.101. In this manner U* can be presentedin the following form 
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As a result of some transformations connected with n-fold integration by parts of the 
right-hand put of (2.21) for 6 > 8 ,, u:) can be represented in the form 

Sk@ (z&f f@$ + B$ 

k-1 (zk’- %/o (zk’- ‘/#+‘S ch &tk 

Hare 

P =- 
[ 1 ; ’ q2jaAiq, 

Bk@) = (- f )’ sin t30P_~,,+~~ (CO9 RI) Skflf (01 [q(n) (eo - 0) - q(“) (&I + 0) J (n = 2s) 

(2.23) 

X Sk(') (El yg (q, sin FJ e-j 
k (co8 80) &(‘) (0) [qtnf (&, - 0) - q@f (&I + 0) ] (n 3: 29 + f ) 

(2.24) 

B&(l) = & P_~,& (cos 4) &+, (E) sin e dE fi 

It follows from relationships (2.22) to (2.24) that in the vicinity of diacontinnities q(“) 
(8) iocel effects arise of the boundary Iuyer type. However, their effect on aIf-solutions is 
the weaker, the smoother q (8) and the smaller 8. In fact, an analysis of coefficients con- 
tained in the-second sum (2.22)-shows that they have the order 0( 82Ptt). Coefficients Cl 
have the order O(S 21 ‘l). The first two coefficients have the form: 

co =-p/z c -%%a [@a- %) d-i-P/~ L (La + i) ea f %Y (% V - X3 fi t/a) 8’1 

[Cl +,‘/ld, d+* “ (9* ?$ f 20 3*’ + 9,,] d 

In this manner, even if p (8) has a discontinaity of the first kind, Expression ~2’ hau 
(0) the order O(S) at the-same time as q+ has the order i3( s-% The setien in (2.22) conver- 

ges uniformly for any A, therefore the behavior of &+, forsmall 8 is determined in the 
entire region by the first term of expansion ~2). This term is the.molution of the momemt- 
le.6 theory of shells. 

The character of behavior of-stress ~8~ in the vicinity of discontinuity q(8jShtms out 
to be mom complex. For illostrntion we shall preeunt the asymptotic eqaetions dsecribing 
the behavior SC~ in the vicinity of the conic-section 8-60 
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1 - 

- LJ wo + (81 + 0 (8) (2.25) 

For the discarded terms to have the order indicated, it is sufficient to assume that q’(8) 
at the point o= fl,, has finite limits from the left and from the right side. 

It is apparent from relationships (2.25) that Toy, contains in it solutions of the boundary 
layer type localized in the vicinity of section 4 = ffo. With respect to E its order is O(l), 
It has a logarithmic singularity on the line of discontinuity. Consequently, for u + 0, recp 
approaches asymptotically everywhere, with the exception of the line of discontinui~, the 
value which is determined from the momentless theory of shells. 

For the solution of the three-dimensional problem to tend everywhere to the momentless 
state, it is sufficient for external loading q (0) to be continuous. 
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